Improved lithium–sulfur batteries with a conductive coating on the separator to prevent the accumulation of inactive S-related species at the cathode–separator interface

نویسندگان

  • Hongbin Yao
  • Kai Yan
  • Weiyang Li
  • Guangyuan Zheng
  • Desheng Kong
  • Zhi Wei Seh
  • Vijay Kris Narasimhan
  • Zheng Liang
  • Yi Cui
چکیده

Lithium–sulfur (Li–S) batteries are highly attractive for future generations of portable electronics and electric vehicles due to their high energy density and potentially low cost. In the past decades, various novel electrodes and electrolytes have been tested to improve Li–S battery performance. However, these designs on electrodes and electrolytes have not fully addressed the problem of low cycling stability of Li–S batteries. Here, we show the role of the separator in the capacity decay of the Li–S battery, namely that it can accommodate a large amount of polysulfides inside which then precipitates as a thick layer of inactive S-related species. Using a thin conductive coating on the separator to prevent the formation of the inactive S-related species layer, we show that the specific capacity and cycling stability of the Li–S battery are both improved significantly compared to the battery with a pristine separator. Combining this separator design with a monodisperse sulfur nanoparticle cathode, we show Li–S batteries with a life of over 500 cycles with an initial specific capacity of 1350 mA h g 1 at C/2 and a cycle decay as low as 0.09% per cycle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A thin multifunctional coating on a separator improves the cyclability and safety of lithium sulfur batteries.

Lithium-sulfur batteries are one of the most promising next-generation batteries due to their high theoretical specific capacity, but are impeded by the low utilization of insulating sulfur, unstable morphology of the lithium metal anode, and transport of soluble polysulfides. Here, by coating a layer of nano titanium dioxide and carbon black onto a commercial polypropylene separator, we demons...

متن کامل

In-operando optical imaging of temporal and spatial distribution of polysulfides in lithium-sulfur batteries

0.1016/j.nanoen.2 lsevier Ltd. All rig thor at: Departm d University, Stan [email protected] ntributed equally Abstract Understanding the behavior of soluble intermediate lithium polysulfide species is vitally important for improving the electrochemical performances of lithium-sulfur batteries. Herein we explore a simple in-operando lithium-sulfur cell design to enable direct visualization of t...

متن کامل

Enhanced wettability and electrolyte uptake of coated commercial polypropylene separators with inorganic nanopowders for application in lithium-ion battery

In this research, inorganic material type and content influence on coating of commercially available polypropylene (PP) separator were studied for improving its performance and safety as lithium ion battery separator. Heat-resistant nanopowders of Al2O3, SiO2 and ZrO2 were coated using polyvinylidene fluoride (PVDF) binder. Coating effects on the separators morphology, wettability, high tempera...

متن کامل

Flexible Carbon Nanotube Modified Separator for High-Performance Lithium-Sulfur Batteries

Lithium-sulfur (Li-S) batteries have become promising candidates for electrical energy storage systems due to their high theoretical specific energy density, low cost and environmental friendliness. However, there are some technical obstacles of lithium-sulfur batteries to be addressed, such as the shuttle effect of polysulfides. Here, we introduced organically modified carbon nanotubes (CNTs) ...

متن کامل

Reactivation of dissolved polysulfides in Li–S batteries based on atomic layer deposition of Al2O3 in nanoporous carbon cloth

nt matter & 2013 0.1016/j.nanoen.2 thor. Tel.: +1 301 . [email protected] ( Abstract This work demonstrates the effect of atomic layer deposited (ALD) Al2O3 on the reactivation of dissolved polysulfides in Li–S batteries. A 0.5 nm thick layer of Al2O3 is conformally coated onto highly porous carbon cloth by ALD, and then assembled in a Li–S battery between the sulfur cathode and the anode side (sep...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014